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8 PCM

8.1. Generally, analog signals are continuous in time and in range (ampli-
tude); that is, they have values at every time instant, and their values can
be anything within the range. On the other hand, digital signals exist only
at discrete points of time, and their amplitude can take on only finitely (or
countably) many values.

8.2. Suppose we want to convey an analog message m(t) from a source to
our destination. We now have many options.

(a) Use m(t) to modulate a carrier A cos(2πfct) using AM (Defn. 4.62),
FM (Defn. 5.15), or PM (Defn. 5.3) techniques studied earlier.

(b) Sample the continuous-time message m(t) to get a discrete-time mes-
sage m[n]:

m (t)→ Sampler → m [n]

• May LPF m(t) before sampling to eliminate aliasing (and reduce
out-of-band noise).

• Need to make sure that the sampling rate fs is fast enough.

(i) Send m[n] using analog pulse modulation techniques (PAM,
PWM, PPM) illustrated in Example 7.5.

• Note that m[n] is a sequence of numbers. Even when m(t)
(and hence m[n]) is bounded, there are uncountably many pos-
sibilities for these numbers. They lie in a continuous dynamic
range.
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• Therefore, information is transmitted basically in analog (not
digital) form but the transmission takes place at discrete times.

(ii) In digital pulse modulation, m[n] is represented by a (discrete)
number (symbol) selected from a finite alphabet set.

i. In Pulse Code Modulation (PCM), we further quantize
m[n] into mn which has finitely many levels. Then, convert mn

into binary sequence represented by two basic pulses.
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Figure 72: PCM System Diagram
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Figure 73: An overview of PCM

ii. There are also other forms of “source coding” such as DPCM
and DM.

Definition 8.3. Pulse-code modulation (PCM) is a discrete-time, discrete-
amplitude waveform-coding process, by means of which an analog signal is
directly represented by a sequence of coded pulses.

8.4. Advantages of PCM
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(a) Robustness to channel noise, distortion, and interference

• assuming these corruptions are within limits.

• With analog messages, on the other hand, any distortion or noise,
no matter how small, will distort the received signal.

(b) Efficient regeneration of the coded signal along the transmission path
by using regenerative repeaters.

• For analog communications,

◦ A message signal becomes progressively weaker as it travels
along the channel, whereas the cumulative channel noise and
the signal distortion grow progressively stronger.

◦ Ultimately the signal is overwhelmed by noise and distortion.

◦ Amplification offers little help because it enhances the signal
and the noise by the same proportion.

◦ Consequently, the distance over which an analog message can
be transmitted is limited by the initial transmission power.

• For digital communications,

◦ We can set up repeater stations along the transmission path
at distances short enough to be able to detect signal pulses
before the noise and distortion have a chance to accumulate
sufficiently.

◦ At each repeater station the pulses are detected, and new, clean
pulses are transmitted to the next repeater station, which, in
turn, duplicates the same process.

(c) Digital signals can be coded to remove redundancy, protect against
channel corruption, and provide privacy.

8.5. PCM has emerged as the most favored scheme for the digital trans-
mission of analog information-bearing signals (e.g., voice and video signals).
[4, p 267]

• The method of choice for the construction of public switched telephone
networks (PSTNs).

8.6. Technically, the term “modulation” used in PCM, DPCM, and DM is
a misnomer. In reality, PCM, DPCM, and DM are different forms of source
coding. [4, p 277]
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8.1 Uniform Memoryless Quantization

Definition 8.7. Through quantization, each sample value m[n] is trans-
formed to (, e.g., approximated, or “rounded off,” to the nearest) quantized
level [6, p 320] or quantum level [3, p 545] (permissible number) taken
from a finite alphabet set M.

8.8. Sampling vs. Quantization:

(a) Sampling operates in the time domain. Quantization operates in the
amplitude domain.

(b) The sampling process is the link between an analog waveform and its
discrete-time representation. The quantization process is the link be-
tween an analog waveform and its discrete-amplitude representation.

Definition 8.9. Suppose the range of the quantizer is (−mp,mp).

• Note that, here, mp is not necessarily the peak value of m(t). The
amplitudes beyond ±mp will be simply chopped off.

A simple (memoryless) quantizer partitions the range into L intervals. Each
sample value is approximated by the midpoint of the interval in which the
sample value falls.

• Each sample is now represented by one of the L numbers.

• Such a signal is known as an L-ary digital signal.

Time
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2

Figure 74: Quantized levels
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• The length of each interval is denoted by ∆ =
2mp

L .

• Because the quantized levels are uniformly spaced, we say that the
quantizer is uniform.

8.10. Quantization introduces permanent errors that appear at the receiver
as quantization noise in the reconstructed signal.

280 Chapter 6 Conversion of Analog Waveforms into Coded Pulses

With the input M having zero mean and the quantizer assumed to be symmetric as in
Figure 6.9, it follows that the quantizer output V and, therefore, the quantization error Q
will also have zero mean. Thus, for a partial statistical characterization of the quantizer in
terms of output signal-to-(quantization) noise ratio, we need only find the mean-square
value of the quantization error Q.

Consider, then, an input m of continuous amplitude, which, symmetrically, occupies the
range [–mmax, mmax]. Assuming a uniform quantizer of the midrise type illustrated in
Figure 6.9b, we find that the step size of the quantizer is given by

(6.25)

where L is the total number of representation levels. For a uniform quantizer, the
quantization error Q will have its sample values bounded by –/2  q  /2. If the step size
 is sufficiently small (i.e., the number of representation levels L is sufficiently large), it is
reasonable to assume that the quantization error Q is a uniformly distributed random
variable and the interfering effect of the quantization error on the quantizer input is similar
to that of thermal noise, hence the reference to quantization error as quantization noise.
We may thus express the probability density function of the quantization noise as 

(6.26)

For this to be true, however, we must ensure that the incoming continuous sample does not
overload the quantizer. Then, with the mean of the quantization noise being zero, its
variance  is the same as the mean-square value; that is,

Figure 6.10
Illustration of the 
quantization process. 
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Figure 75:
Error in the
quantized out-
put [4, Fig.
6.10].

Let q[n] = m[n] − mn be the quantization error for the nth sample. If
the step size ∆ is sufficiently small (i.e., L is sufficiently large) and m[n]
is bounded by (−mp,mp), it is reasonable to assume that the quantization
error is uniformly distributed on

[
−∆

2 ,
∆
2

]
.

Assuming that the sampling is done with sampling rate fs that is fast
enough (> 2B). Then, we know, from the reconstruction equation (84),
that

m (t) =
∞∑

n=−∞
m [n] sinc (πfs (t− nTs)) . (89)

With quantization, the sequence mn is transmitted instead of m[n]. Hence,
at the receiver, the reconstructed signal is

m̂ (t) =
∞∑

n=−∞
mn sinc (πfs (t− nTs)) . (90)
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The distortion component in the reconstructed signal, which is referred to
as the quantization noise, is

q(t) = m(t)− m̂(t).

One can then show that the average power of the quantization noise is

Pq = E
[
(m[n]−mn)

2
]

= E
[
q2[n]

]
=

∆2

12
=
m2
p

3L2
. (91)

So, the signal-to-(quantization)-noise power ratio (SNR or SQNR) is

SNR ≡ Pm
Pq

=
12Pm
∆2

=
3L2Pm
m2
p

. (92)

This is an indication of the quality of the received signal. We want SNR to
be large.

8.11. Sinusoidal Modulating Signal: For sinusoidal signal m(t) with
amplitude A, its power is Pm = 1

2A
2 and therefore,

SNR =
12Pm
∆2

=
12
(

1
2A

2
)

∆2
=

6A2

∆2
= 10log10

(
6A2

∆2

)
[dB] . (93)

8.12. Full-Load Sinusoidal Modulating Signal: If the sinusoidal m(t)
fully covers the whole range of the quantizer, we have A = mp, Pm = 1

2m
2
p

and

SNR =
3L2Pm
m2
p

=
3L2

(
1
2m

2
p

)
m2
p

= 1.5L2 = 10log10

(
1.5L2

)
[dB] . (94)

8.13. As mentioned earlier, in PCM, the quantized samples are coded and
transmitted as binary pulses. At the receiver, some pulses may be detected
incorrectly. Hence, there are two sources of error in this scheme:

(a) quantization error

(b) pulse detection error

In almost all practical schemes, the pulse detection error is quite small
compared to the quantization error and can be ignored. [6, p 322]

8.14. The quantization error can be reduced as much as desired by in
creasing the number of quantizing levels, the price of which is paid in an
increased required transmission bandwidth. See (96).
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8.2 Pulse Coding

8.15. From practical viewpoint, a binary digital signal (a signal that can
take on only two values) is very desirable because of its simplicity, economy,
and ease of engineering. We can convert an L-ary signal into a binary signal
by using pulse coding.

• A binary digit is called a bit.

• L = 2` levels can be mapped into (represented by) ` bits.

Example 8.16. In Figure 73, L = 8. The binary code can be formed by
the binary representation of the 8 decimal digits from 0 to 7; that is we
assign the word 000 to the lowest level and progresses upward to 111 in
the natural order of binary counting. This “natural” code is also known as
“offset binary code”.

Example 8.17. Telephone (speech) signal:

• The components above 3.4 kHz are eliminated by a low-pass filter.

◦ For speech, subjective tests show that signal intelligibility is not
affected if all the components above 3.4 kHz are suppressed.

• The resulting signal is then sampled at a rate of 8,000 samples per
second (8 kHz).

◦ This rate is intentionally kept higher than the Nyquist sampling
rate of 6.8 kHz so that realizable filters can be applied for signal
reconstruction.

• Each sample is finally quantized into 256 levels (L = 256), which re-
quires eight bits to encode each sample (28 = 256).

[6, p 320]
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Example 8.18. Compact disc (CD) audio signal:

• High-fidelity: Require the audio signal bandwidth to be 20 kHz.

• The sampling rate of 44.1 kHz is used.

• The signal is quantized into L = 65, 536 of quantization levels, each of
which is represented by 16 bits (16-bit two’s complement integer) to
reduce the quantizing error.

[6, p 321]

8.19. The SNR for the full-load sinusoidal modulating signal discussed in
8.12 is then

SNR = 1.5
(
22`
)

= 10log101.5 + 2` 10log102︸ ︷︷ ︸
≈3

[dB] ≈ 1.76 + 6` [dB] . (95)

8.20. Recall, from 7.33, that a maximum of 2B independent pieces (sym-
bols) of information per second can be transmitted, errorfree, over a noise-
less channel of bandwidth B Hz. In other words, one can send at most 2
[Sa/s/Hz]. This is achieved by using the sinc pulse train. Here, because we
use binary coding, one symbol is the same as one bit. Therefore, for PCM,
one can send at most 2 [b/s/Hz]. Equivalently, if the bit rate is Rb [bps],
the minimum required baseband transmission bandwidth is

Rb

2
=
fs`

2
≥ 2B`

2
= `B. (96)
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8.3 Line Coding

8.21. The last signal-processing operation in the transmitter is that of line
coding, the purpose of which is to represent/convert sequence of bits by/into
a sequence of (electrical) pulses.

8.22. Figure 76 depicts various line codes for the binary message 10110100,
taking rectangular pulses for clarity.
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Figure 11.1–1 Binary PAM formats with rectangular pulses: (a) unipolar RZ and NRZ; (b)
polar RZ and NRZ; (c) bipolar NRZ; (d) split-phase Manchester; (e) polar 
quaternary NRZ.
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Finally, Fig. 11.1–1e shows a quaternary signal derived by grouping the mes-
sage bits in blocks of two and using four amplitude levels to prepresent the four pos-
sible combinations 00, 01, 10, and 11. Thus, D � 2Tb and . Different
assignment rules or codes may relate the ak to the grouped message bits. Two such
codes are listed in Table 11.1–1. The Gray code has advantages relative to noise-
induced errors because only one bit changes going from level to level.

Quaternary coding generalizes to M-ary coding in which blocks of n message
bits are represented by an M-level waveform with

(4a)

Since each pulse now corresponds to n � log2 M bits, the M-ary signaling rate has
been decreased to

M � 2n

r � rb>2
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Figure 76: Line codes with
rectangular pulses: (a) unipo-
lar RZ and NRZ; (b) po-
lar RZ and NRZ; (c) bipolar
NRZ; (d) split-phase Manch-
ester; (e) polar quaternary
NRZ. [3, Fig 11.1-1 p 483]

Definition 8.23. The simple on-off waveform in Figure 76a represents
each 0 by an “off” pulse and each 1 by an “on” pulse.

(a) In the (unipolar) return-to-zero (RZ) format, the pulse duration is
smaller than Tb after which the signal return to the zero level.
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(b) A (unipolar) nonreturn-to-zero (NRZ) format has “on” pulses for
full bit duration Tb.

Definition 8.24. The polar signal in Figure 76b has opposite polarity
pulses

• Its DC component will be zero if the message contains 1s and 0s in
equal proportion.

Definition 8.25. Figure 76c, we have bipolar signal where successive 1s
are represented by pulses with alternating polarity.

• Use three amplitude levels

• Also known as pseudo-ternary or alternate mark inversion (AMI)

Definition 8.26. The split-phase or Manchester format in Figure 76d
represents 1s with a positive half-interval pulse followed by a negative half-
interval pulse, and vice versa for the representation of 0s.

• Also called twinned binary.

• Guarantee zero DC component regardless of the message sequence.

Definition 8.27. Figure 76e shows a quaternary signal derived by group-
ing the message bits in blocks of two and using four amplitude levels to
prepresent the four possible combinations 00, 01, 10, and 11.

• Quaternary coding can be generalized to M -ary coding in which
blocks of n message bits are represented by an M -level waveform with
M = 2n.
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